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Gliding arc plasma reactors find applications in a wide variety of fields, including environmental
remediation, waste treatment, and energy conversion [1]. The energetic nature of the plasma discharge
facilitates the decomposition of volatile organic compounds (VOCs), pollutants, and other hazardous
substances present in gas streams, offering a sustainable approach to air and water purification.
Moreover, the highly reactive species generated in gliding arc reactors with low power consumption
make them suitable candidates for the synthesis of value-added chemicals and materials from renewable
sources, contributing to the advancement of green chemistry and sustainable manufacturing practices.

In this work, we use a novel gliding arc reactor where the active electrode is an ovoid and the
grounded electrode consists of a mesh that surrounds the former, both made of stainless steel (this
configuration provides a large discharge region). A sinusoidal electrical signal (3kV and 300 Hz) was
used to ignite the discharge and different mixtures of Ar and NH; were used as inlet gases. The emission
of the plasma discharges was registered using a Horiba Ltd., Jobin-Yvon FHR640 spectrometer
equipped with a 1201 grooves/mm diffraction grating centered at 330 nm. The emission was
transversely collected from the most intense region of the plasma near the central electrode and recorded
with a spectral resolution ranging from 0.05 to 0.1 nm.
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Fig. 1: OES spectrum detected for (left) the pure Ar and (right) Ar/NH3 discharges.
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(Fig. 2). Fig. 2: Excited species in the plasma.

The plasma electron density (n.) was measured from the Stark broadening of both H, and Hp lines
[2] (Fig. 3 (left)). A maximum was detected when moderate fractions of NH; were introduced in the
discharge. The gas temperature (7;) was measured from the collisional broadening of Ar I 840.82 nm
emission line following the method proposed in reference [3] (Fig. 3 (right)). The gas temperature
exhibited an increase upon NHj introduction. It’s worth noting that the values of the rotational
temperature T, v2 derived from the simulation of the N> (C*I1 — BII) rotational band (band head at
353.67 nm) are notably higher than 7, thus overestimating this plasma parameter.
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Fig. 3: n. (left) and T, (right) evolutions with NH3 flow rate.
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