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Low-temperature plasmas (LTPs) are versatile in their applications, finding uses in areas ranging 
from plasma medicine to CO2 conversion for in-situ resource utilisation [1,2]. While experimental 
studies provide valuable physical parameters for these systems, a comprehensive understanding of LTPs 
necessitates a synergy of experimental and modelling efforts. Models can access crucial information 
unattainable by experiments alone. However, plasma simulations, while essential, can often be 
computationally intensive [3]. Surrogate models mitigate this limitation by offering quick 
approximations of complex systems, crucial for optimisation, real-time decision-making, and analysing 
large-scale problems [4]. Conversely, accurate modelling of LTPs presents challenges due to the 
complex plasma chemistry and uncertainties in input parameters. A key aspect of LTP modelling is 
developing an accurate kinetic scheme, which involves identifying relevant reactions and determining 
their rate coefficients. This task is complicated by the limited available knowledge of rate coefficients 
[5], often derived through time-consuming trial-and-error methods.  

In this work, we apply deep learning to tackle both the modelling and parameter recovery challenges 
in plasma physics, illustrating the benefits of merging physical insights with machine learning to 
improve the accuracy and efficiency of models. The system under study is an oxygen plasma created by 
a DC glow discharge at gas pressures of 𝑝 = 0.2 − 10 Torr and discharge currents of 𝐼 = 10 − 40 mA. 
The reason for this choice is twofold. On the one hand, this system exhibits a high degree of complexity, 
as its properties depend on the interplay between electron, vibration, chemical, ion and surface kinetics. 
On the other hand, a detailed reaction mechanism was recently developed [3], providing an ideal test 
bed for the proposed novel approaches.  

Surrogate models can be designed to predict steady-state species concentrations, temperature, and 
transport coefficients as a function of the reactor's relevant operating conditions. Since data collection 
can be costly, encoding prior physics knowledge into the neural network (NN) can be helpful as it 
amplifies the available information. Modern physics-informed machine learning methods include a 
penalty term in the loss function, discouraging deviations from physical constraints and efficiently 
guiding the model toward the correct solution [6]. However, these models do not guarantee that, after 
training, the outputs for unseen inputs will satisfy such constraints. Here, we propose a novel approach 
for integrating physical information into the deep learning model. Our method involves projecting the 
model's predictions onto a manifold defined by the constraint 𝑔(𝑥, 𝑦) = 0, where 𝑥 is the model's input, 
y is the model's output and 𝑔(𝑥, 𝑦) is a vector-valued constraint function that is zero if, and only if, those 
physical laws are satisfied. To that aim, through sequential quadratic programming, we formulate the 
projection operation as a constrained optimisation problem 

                                    𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒	||𝑝 − 𝑓(𝑥; 𝛩)||!"  , 						𝑠. 𝑡. 𝑔(𝑥, 𝑝) = 0                                (1) 
where 𝑊 is a symmetric positive definite weighting matrix, i.e. ||𝑣||!" = 𝑣#𝑊𝑣 , 𝑓(𝑥; 𝛩)  is the machine 
learning parametric model and 𝛩 is the model parameter vector [7]. This projection is pivotal in guiding 
the network to adhere to the physical laws governing plasma behaviour, enhancing the model's accuracy 
and minimising the dataset's training size. We have developed a surrogate model to the reaction 
mechanism developed in [3]. The physical laws included in the constraint function are the ideal gas law, 
the quasi-neutrality condition, and the relation between the discharge current and electron density. Fig. 
1 compares the NN modelling and target simulation values of the concentration of ground state positive 
ions 𝑂"#, denoted as O2(+, X), as a function of pressure and for 𝐼 = 30 mA. It evidences the method's 
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ability to improve the pressure-related trend, yielding predictions that closely match those observed in 
the simulation. The mean error in predicting this species is reduced from 1.2% to 0.5%. Moreover, this 
technique reduces the error of compliance with physical laws to below 0.50% of its original value, 
ensuring adherence to the imposed physical laws.     

We carried out an additional study to extend the use of deep NNs to automate the prediction of a 
selected set of rate coefficients within this oxygen-based plasma scheme. Our framework comprises 
data generation using the LoKI-B+C modules [8] of the LisbOn KInetics (LoKI) simulation tool, data 
processing, architecture search, and hyperparameter tuning. This deep learning model is trained on 
artificial data generated by LoKI-B+C with sampled reaction rate coefficients around their established 
reference values. The aim is for the model to accurately recover these coefficients. The NN, receiving 
the steady-state densities of species as input, under various experimental conditions, learns to inversely 
map the simulations, thereby determining the reaction rate coefficients. We consider the prediction of 
seven rate coefficients based on heavy-species densities under diverse pressure and current conditions. 
The model effectively predicts rate coefficients with a mean relative error of 2.00% across predictions, 
showcasing its reliability as a proof-of-concept.  

Future work will broaden the scope of the study to include more reactions, rate coefficients, and 
plasma systems and operating conditions. This expansion will also incorporate experimental data and 
explore diverse chemistries (e.g. CO2, CH4, N2-H2) and plasma-surface interactions, enriching the 
model's applicability and accuracy. 

Fig. 1: Comparison between NN predictions and 
simulation values of the concentration of 𝑂"$ as a 
function of pressure, for a reactor radius of 12 mm and 
𝐼 = 30 mA, before projecting the model’s predictions 
and after projecting the model’s predictions.  

Fig. 2: For each output, comparison of the relative 
errors of the standard NN model; NN with each of the 
physical constraints applied individually; and NN with 
the three constraints applied simultaneously.
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